Legendre spectral projection methods for Urysohn integral equations

نویسندگان

  • Payel Das
  • Mitali Madhumita Sahani
  • Gnaneshwar Nelakanti
چکیده

In this paper, we consider the Legendre spectral Galerkin and Legendre spectral collocation methods to approximate the solution of Urysohn integral equation. We prove that the approximated solutions of the Legendre Galerkin and Legendre collocation methods converge to the exact solution with the same orders, O(n−r) in L2-norm and O(n 1 2 −r) in infinity norm, and the iterated Legendre Galerkin solution converges with the order O(n−2r) in both L2-norm and infinity norm, whereas iterated Legendre collocation solution converges with the order O(n−r) in both L2-norm and infinity norm, n being the highest degree of Legendre polynomial employed in the approximation and r being the smoothness of the kernel. We are able to obtain similar superconvergence rates for the iterated Galerkin solution for Urysohn integral equations with smooth kernel as in the case of piecewise polynomial basis functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

متن کامل

Spectral Scheme for Solving Fuzzy Volterra Integral Equations of First Kind

This paper discusses about the solution of fuzzy Volterra integral equation of first-kind (F-VIE1) using spectral method. The parametric form of fuzzy driving term is applied for F-VIE1, then three classifications for (F-VIE1) are searched to solve them. These classifications are considered based on the interval sign of the kernel. The Gauss-Legendre points and Legendre weights for arithmetics ...

متن کامل

On the numerical solution of Urysohn integral equation using Legendre approximation

Urysohn integral equation is one of the most applicable topics in both pure and applied mathematics. The main objective of this paper is to solve the Urysohn type Fredholm integral equation. To do this, we approximate the solution of the problem by substituting a suitable truncated series of the well known Legendre polynomials instead of the known function. After discretization of the problem o...

متن کامل

A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods

In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 263  شماره 

صفحات  -

تاریخ انتشار 2014